
Space Efficient Elephant Flow Detection
Ran Ben Basat

Technion
sran@cs.technion.ac.il

Gil Einziger
Nokia Bell Labs

sran@cs.technion.ac.il

Roy Friedman
Technion

roy@cs.technion.ac.il

ABSTRACT
Identifying the large flows in terms of byte volume, known as
elephant flows, is a fundamental capability that many network algo-
rithms require. While optimal solutions that find the largest flows
in terms of packet-count are known [5], constant update time algo-
rithms for byte-volume were only recently discovered [1, 2]. Here,
we propose an improved variant of the DIMSUM algorithm [2]
that reduces the space requirement by 50% while allowing O(1) up-
date time.

CCS CONCEPTS
• Networks→ Network measurement;

KEYWORDS
Network Measurement, Elephant Flows, Streaming
ACM Reference Format:
Ran Ben Basat, Gil Einziger, and Roy Friedman. 2018. Space Efficient Ele-
phant Flow Detection. In SYSTOR ’18: SYSTOR ’18: International Systems and
Storage Conference, June 4–7, 2018, HAIFA, Israel. ACM, New York, NY, USA,
1 page. https://doi.org/10.1145/3211890.3211919

1 INTRODUCTION
Per-flow network monitoring is a fundamental building block in
many networking applications such as load balancing, caching,
and anomaly detection (see [3, 4] for an overview). As the number
of flows is often huge, the space required for exact monitoring is
too large for practical implementations. Instead, algorithms that
provide approximate per-flow statistics are used.

2 PROBLEM DEFINITION
Consider a stream of packets ⟨x1,w1⟩ , . . . in which each packet is
associated with a flow identifier xi (e.g., 5-tuple) and a byte-size
wi . The byte-size of a flow x is defined as fx ≜

∑
xi=x wi and the

volume of the stream asV ≜
∑
wi . In the ϵ-Elephant Flow problem,

we process the stream and upon query for the size of a flow x we
return an estimate f̂x that satisfies fx ≤ f̂x ≤ fx +Vϵ .

3 RELATEDWORK
The Elephant Flow problem was introduced by [6] which presented
an algorithm that uses ϵ−1 counters (which is known to be optimal)

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SYSTOR ’18, June 4–7, 2018, HAIFA, Israel
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5849-1/18/06. . . $15.00
https://doi.org/10.1145/3211890.3211919

and hasO(log ϵ−1) update time. Recently, [1, 2] proposed algorithms
that use (1 + γ)ϵ−1 counters, for some constant γ > 0, that has
O(1) amortized update time. A constant worst case time solution
(DIMSUM) was proposed in [2], but it requires (2 + γ)ϵ−1 counters
for some γ = Ω(1).

4 OUR ALGORITHM - DIMSUM++
We allocate (1 + γ)ϵ−1 counters. We break the stream into phases,
maintaining the invariant that at the beginning of each phase
γϵ−1/2 counters are unallocated. Let C1 denote the set of allocated
counters at the beginning of an iteration and C2 denote the unallo-
cated ones. During the firstγϵ−1/4 packets of the phase, we allocate
a C2 counter for each arriving flow (even if he has one in C1). At
the same time, we find the γϵ−1/2 smallest counters inC1 (denoted
C ′1) using a selection algorithm, while deamortizing the process
that such O(γ−1) operations are made at each update. While pro-
cessing the next γϵ−1/4 packets, we merge counters by summation
such that at the end of the phase each flow has just one counter.
Once again, we deamortize the process to get aO(γ−1) update time
per packet. At the end of the phase, we set C1 ← (C1 \ C ′1 ∪ C2)
and C2 ← C ′1. That is, we make sure that the largest ϵ−1 counters
are never placed in C ′1 (and thus, C2). Effectively, we consider the
counters in C ′1 as deleted and ready to be reallocated in the next
phase. The analysis of DIMSUM shows that as long as the flows
with the ϵ−1 largest counters are never replaced, the procedure
solves the Elephant Flow problem. Finally, picking γ to be a small
constant (e.g., 5%) we get a constant worst case time algorithm with
a near-optimal space.

5 CONCLUSION
Existing solutions for the Elephant Flow problem have either: (1)
non-constant update time [6]; (2) only amortized constant update
time [1, 2]; or (3) require more than twice the space [2]. DIMSUM++
improves the best knownO(1)worst case solution by requiring half
the space. Smaller memory footprint may allow the algorithm to
be better cache resident in software implementations or fit into the
router’s SRAM in hardware ones.

REFERENCES
[1] Daniel Anderson, Pryce Bevan, Kevin Lang, Edo Liberty, Lee Rhodes, and Justin

Thaler. 2017. A High-performance Algorithm for Identifying Frequent Items in
Data Streams. In ACM IMC.

[2] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Optimal
elephant flow detection. In IEEE INFOCOM.

[3] Ran Ben Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2017. Randomized
admission policy for efficient top-k and frequency estimation. In IEEE INFOCOM.

[4] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy
Hitters in Streams and Sliding Windows. In IEEE INFOCOM.

[5] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-
putation of Frequent and Top-k Elements in Data Streams. In IN ICDT.

[6] J. Misra and David Gries. 1982. Finding repeated elements. In Science of Computer
Programming.

115

https://doi.org/10.1145/3211890.3211919
https://doi.org/10.1145/3211890.3211919

	Abstract
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 Our Algorithm - DIMSUM++
	5 Conclusion
	References

