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ABSTRACT
Identifying the large flows in terms of byte volume, known as
elephant flows, is a fundamental capability that many network algo-
rithms require. While optimal solutions that find the largest flows
in terms of packet-count are known [5], constant update time algo-
rithms for byte-volume were only recently discovered [1, 2]. Here,
we propose an improved variant of the DIMSUM algorithm [2]
that reduces the space requirement by 50% while allowing O(1) up-
date time.
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1 INTRODUCTION
Per-flow network monitoring is a fundamental building block in
many networking applications such as load balancing, caching,
and anomaly detection (see [3, 4] for an overview). As the number
of flows is often huge, the space required for exact monitoring is
too large for practical implementations. Instead, algorithms that
provide approximate per-flow statistics are used.

2 PROBLEM DEFINITION
Consider a stream of packets ⟨x1,w1⟩ , . . . in which each packet is
associated with a flow identifier xi (e.g., 5-tuple) and a byte-size
wi . The byte-size of a flow x is defined as fx ≜

∑
xi=x wi and the

volume of the stream asV ≜
∑
wi . In the ϵ-Elephant Flow problem,

we process the stream and upon query for the size of a flow x we
return an estimate f̂x that satisfies fx ≤ f̂x ≤ fx +Vϵ .

3 RELATEDWORK
The Elephant Flow problem was introduced by [6] which presented
an algorithm that uses ϵ−1 counters (which is known to be optimal)
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and hasO(log ϵ−1) update time. Recently, [1, 2] proposed algorithms
that use (1 + γ )ϵ−1 counters, for some constant γ > 0, that has
O(1) amortized update time. A constant worst case time solution
(DIMSUM) was proposed in [2], but it requires (2 + γ )ϵ−1 counters
for some γ = Ω(1).

4 OUR ALGORITHM - DIMSUM++
We allocate (1 + γ )ϵ−1 counters. We break the stream into phases,
maintaining the invariant that at the beginning of each phase
γϵ−1/2 counters are unallocated. Let C1 denote the set of allocated
counters at the beginning of an iteration and C2 denote the unallo-
cated ones. During the firstγϵ−1/4 packets of the phase, we allocate
a C2 counter for each arriving flow (even if he has one in C1). At
the same time, we find the γϵ−1/2 smallest counters inC1 (denoted
C ′1) using a selection algorithm, while deamortizing the process
that such O(γ−1) operations are made at each update. While pro-
cessing the next γϵ−1/4 packets, we merge counters by summation
such that at the end of the phase each flow has just one counter.
Once again, we deamortize the process to get aO(γ−1) update time
per packet. At the end of the phase, we set C1 ← (C1 \ C ′1 ∪ C2)
and C2 ← C ′1. That is, we make sure that the largest ϵ−1 counters
are never placed in C ′1 (and thus, C2). Effectively, we consider the
counters in C ′1 as deleted and ready to be reallocated in the next
phase. The analysis of DIMSUM shows that as long as the flows
with the ϵ−1 largest counters are never replaced, the procedure
solves the Elephant Flow problem. Finally, picking γ to be a small
constant (e.g., 5%) we get a constant worst case time algorithm with
a near-optimal space.

5 CONCLUSION
Existing solutions for the Elephant Flow problem have either: (1)
non-constant update time [6]; (2) only amortized constant update
time [1, 2]; or (3) require more than twice the space [2]. DIMSUM++
improves the best knownO(1)worst case solution by requiring half
the space. Smaller memory footprint may allow the algorithm to
be better cache resident in software implementations or fit into the
router’s SRAM in hardware ones.
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