
STAPL
Standard Template Adaptive Parallel Library

Lawrence Rauchwerger

Antal Buss, Harshvardhan, Ioannis Papadopoulous,
Olga Pearce, Timmie Smith, Gabriel Tanase, Nathan Thomas,

Xiabing Xu, Mauro Bianco, Nancy M. Amato

http://parasol.tamu.edu/stapl

Dept of Computer Science and Engineering, Texas A&M

Motivation

● Multicore systems: ubiquitous

● Problem complexity and size is increasing
– Dynamic programs are even harder

● Programmability needs to improve

● Portable performance is lacking
– Parallel programs are not portable
– Scalability & Efficiency is (usually) poor

STAPL: Standard Template Adaptive Parallel Library

A library of parallel components that
adopts the generic programming
philosophy of the C++ Standard
Template Library (STL)

–Application Development Components
 pAlgorithms, pContainers, Views, pRange

 Provide Shared Object View to eliminate
explicit communication in application

–Portability and Optimization
 Runtime System(RTS) and

Adaptive Remote Method Invocation (ARMI)
Communication Library

 Framework for Algorithm Selection and
Tuning (FAST)

Three STAPL Developer Levels

● Application Developer
– Writes application
– Uses pContainers and pAlgorithms

● Library Developer
– Writes new pContainers and pAlgorithms
– Uses pRange and RTS

● Run-time System Developer
– Ports system to new architectures
– Writes task scheduling modules
– Uses native threading and

communication libraries

User Application Code

pAlgorithms
Views

pContainers

Pthreads, OpenMP, MPI, Native, …

Run-time System

ARMI Communication
Library

Scheduler Executor Performance
Monitor

pRange

Applications Using STAPL

● Particle Transport - PDT
● Bioinformatics - Protein Folding
● Geophysics - Seismic Ray Tracing
● Aerospace - MHD

– Seq. “Ctran” code (7K LOC)
– STL (1.2K LOC)
– STAPL (1.3K LOC)

pContainers :
Parallel Containers

● Container - Data structure with an interface to
maintain and access a collection of generic elements
– STL (vector, list, map, set, hash), MTL[1] (matrix), BGL[2] (graph), etc.

● pContainer - distributed storage and concurrent
methods
– Shared Object View
– Compatible with sequential counterpart (e.g., STL)
– Thread Safe
– Support for user customization (e.g., data distributions)
– Currently Implemented: pArray, pVector, pList, pGraph,

pMatrix, pAssociative

1] Matrix Template Library 2] Boost Graph Library

pContainer Framework

Concepts and methodology for developing parallel
containers
– pContainers - a collection of base containers and

information for parallelism management
– Improved user productivity

● Base classes providing fundamental functionality
◆ Inheritance
◆ Specialization

● Composition of existing pContainers
– Scalable performance

● Distributed, non replicated data storage
● Parallel (semi-random) access to data
● Low overhead relative to the base container counterpart

c d e f

a b

a b

e f

c d ca b fd e

Location 0 Location 1 Location 0 Location 1

User Levelp_array pa(6)

2 3 4 50 1

Base
Containers

Data Distribution
Info_0 Info_1

● Base Container : data storage
– sequential containers (e.g., STL, MTL,
BGL)

B

– parallel containers (e.g., Intel TBB)

● Data Distribution Information
- Shared object view
- Global Identifier, Domain, Partition,
Location, Partition Mapper

pContainer Framework Concepts

Data Distribution
Info_0 Info_1

pContainer Interfaces

– Constructors
● Default constructors
● May specify a desired data distribution

– Concurrent Methods
● Sync, async, split phase

– Views

stapl_main(){

 partition_block_cyclic partition(10); //argument is block size

 p_matrix<int> data(100, 100, partition);

 p_generate(data.view(), rand());

 res=p_accumulate(data.view(),0);

}

pGraph Methods

CRAY XT4 Power 5

● Performance for add vertex and add edge asynchronously
● Weak scaling on CRAY using up to 24000 cores and on Power 5

cluster using up to 128 cores
● Torus with 1500x1500 vertices per processor

pGraph Algorithms

CRAY XT4 Power 5

● Performance for find_sources and find_sinks in a directed graph
● Weak scaling on CRAY using up to 24000 cores and on Power 5

cluster using up to 128 cores
● Torus with 1500x1500 vertices per processor

Views

● A View defines an abstract data type that provides
methods for access and traversal of the elements of a
pContainer that is independent of how the elements are
stored in the pContainer.

● Example: print the elements of a matrix

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

Matrix Rows view Columns view

Output
1,2,3,4,5,6,7,8,9

Output
1,4,7,2,5,8,3,6,9

print(View v)
 for i=1 to v.size() do
 print(v[i])

pAlgorithms

● Build and execute task graphs to perform computation
– Task graphs in STAPL are called pRanges

● Easy to develop
– Work functions look like sequential code
– Work functions can call STAPL pAlgorithms
– pRange factories simplify task graph construction

● STAPL pAlgorithms accelerate application development
– Basic building blocks for applications
– Parallel equivalents of STL algorithms
– Parallel algorithms for pContainers

● Graph algorithms for pGraphs
● Numeric algorithms/operations for pMatrices

Parallel Find
● Find first element equal to the given value

View::iterator

p_find(View view, T value)

 return

 map_reduce(

 view,

 find_work_funtion(value),
 std::less()

);
map operation

reduce operation

View::iterator

find_work_function(View view)

 if (do_nesting())

 return p_find(view, value)

 else

 return std::find(view.begin(),

 view.end(),

 value)

 endif

end

Parallel Sample Sort
● pAlgorithm written using sequence of task graphs.
p_sort(View view, Op comparator)

 // handle recursive call

 if (view.size() <= get_num_locations())

 reduce(view, merge_sort_work_function(comparator));

 sample_view = map(view, select_samples_work_function());

 // sort the samples

 p_sort(sample_view, comparator);

 // paritition the data using the samples

 partitioned_view = map(view, full_overlap_view(sample_view),

 bucket_partition_work_function(comparator));

 // sort each partition

 map(partitioned_view, sort_work_function(comparator));

Scalability of pAlgorithms

Execution

times for

weak scaling

of pAlgorithms

on data stored

in different

pContainers

on CRAY XT4.

STAPL Runtime System

Application Specific Parameters

Smart Application

STAPL RTS

Kernel Scheduler

(no custom scheduling, e.g. NPTL)
Operating System

ARMI Executor Memory ManagerAdvanced stageAdvanced stage

Comm. Thread

RMI Thread

Task Thread

User-Level

Dispatcher

Experimental stage: Experimental stage:
multithreadingmultithreading

ARMI Executor

Custom schedulingCustom scheduling

Kernel schedulingKernel scheduling

Memory Manager

The STAPL Runtime System (RTS)...

 Abstracts platform resources
– threads, mutexes, atomics

 Provides consistent API and behavior across platforms
 Configured at compile-time for a specific platform

 Hardware counters, different interconnect characteristics
 Adapts at runtime at the runtime environment

 Available memory, communication intensity etc.
 Provides interface for calling functions on distributed

objects
– ARMI – Adaptive Remote Method Invocation

 There is one instance of the RTS running in every process
– So it is distributed as well

ARMI:
Adaptive Remote Method Invocation

 Communication service of
the RTS

 Provides two degrees of
freedom

 Allows transfer of data,
work, or both across the
system

 Used to hide latency
 Used to call a function on a

distributed object
anywhere on the system

 Supports a mixed-mode
operation (MPI+threads)

// Example of ARMI use
async_rmi(destination, p_object,
 function, arg0, ...);
r = sync_rmi(destination, p_object,
 function, arg0, ...);

async_rmi

sync_rmi

multi_async_rmi multi_sync_rmi

opaque_rmi

multi_opaque_rmi reduce_rmi

broadcast_rmi

allreduce_rmi

rmi_fence
rmi_flush

rmi_barrier

Asynchronous Synchronous

Synchronization

Collective

one-to-many

rmi_fence_os

The STAPL RTS: Major Components

STAPL Runtime System

Hardware Monitoring

Scheduler
Adaptivity

•Hardware Counters
•System resource usage
•Interfaces with TAU and
OS provided system calls

Resource Reuse

•Different Communication methods
•RMI request aggregation and combining

•Execution of tasks
provided by the pRange

•Thread Pool
•Memory Manager

•Feedback to pContainers / pRange
•Resource acquisition before needed
•Load monitoring and thread allocation
•Detection if on shared memory or
have to use MPI

•Execution of RMIs
•Consistency Models

Executor

ARMI

Multithreaded
Support

FAST Architecture
● Framework for parallel algorithm selection
● Developer specifies important parameters, metrics to use
● Developer queries model produced to select implementation
● Selection process transparent to code calling algorithm

User
Code Parallel Algorithm Choices

Data Characteristics Runtime Tests

Selected Algorithm

STAPL

Adaptive Executable

Model

Parallel Sorting: Experimental Results

SGI Altix Selection Model

SGI Altix Validation Set (V1) – 100% Accuracy

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

Radix

Sample

Column
Adaptive

Nearly / Integer Rev / Integer Rand / Integer Nearly / Double Rand / Double

4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32 4 8 16 32Procs:
|---MaxElement = 120,000---|

0
5

10
15
20
25
30

N=120M

Adaptive Performance Penalty

 Attributes for Selection Model
–Processor Count
–Data Type

–Input Size
–Max Value (impacts radix sort)

–Presortedness

Parallel Sorting - Altix Relative Performance (V2)

● Model obtains 99.7% of the possible performance.

● Next best algorithm (sample) provides only 90.4%.

0.2

0.4

0.6

0.8

1

2 4 8 16 32

Processors

R
el

at
iv

e
S

p
ee

d
u

p Sample

Column

Radix

Random

Adaptive

Best

PDT:
Developing Applications with STAPL

● Important application for DOE
– E.g., Sweep3D and UMT2K

● Large, on-going DOE project at TAMU to develop
application in STAPL

● STAPL precursor used by PDT in DOE PSAAP center

One sweep Eight simultaneous sweeps

1

2 5

3 6

4 7

8

10 13

18 2112 15

14 1711

9

22 2516 19

26 2920 23

3024 27

28 31

32

prA
4

3 8

2 7

1 6

5

11 16

19 249 14

15 2010

12

23 2813 18

27 3217 22

3121 26

25 30

29

prB

pRanges in PDT:
Writing new pAlgorithms

4321

8765

1
2

1
1

1
0

9

1
6

1
5

1
4

1
3

2
0

1
9

1
8

2
4

2
3

2
2

2
8

2
7

2
6

3
2

3
1

3
0

1
7

2
1

2
5

2
9

AB

zip(prA, prB, Zipper(4,32,4));

● pRanges are
sweeps in particle
transport application

● Reflective materials
on problem
boundary create
dependencies

● Composition
operator will allow
easy composition

Sweep Performance
● Weak scaling keeps

number of unknowns per
processor constant.

● Communication
increases with processor
count.

● KBA Model shows
performance of perfectly
scheduled sweep

● Divergence after 2048
processors due to non-
optimal task scheduling

Conclusion

● STAPL allows productive parallel application development

● pContainers and pAlgorithms
– Application building blocks
– Simplify development
– Extensibility enables easy development of new components

● Composition of pContainers and pAlgorithms enable reuse

● RTS and FAST provide portability and adaptability

	STAPL Standard Template Adaptive Parallel Library
	Motivation
	STAPL: Standard Template Adaptive Parallel Library
	Three STAPL Developer Levels
	Applications Using STAPL
	pContainers : Parallel Containers
	pContainer Framework
	pContainer Framework Concepts
	pContainer Interfaces
	pGraph Methods
	pGraph Algorithms
	Views
	pAlgorithms
	Parallel Find
	Parallel Sample Sort
	Scalability of pAlgorithms
	STAPL Runtime System
	The STAPL Runtime System (RTS)...
	Slide 19
	Slide 20
	FAST Architecture
	Parallel Sorting: Experimental Results
	Parallel Sorting - Altix Relative Performance (V2)
	PDT: Developing Applications with STAPL
	pRanges in PDT: Writing new pAlgorithms
	Sweep Performance
	Conclusion

